	Alternative method 1: using the radius				
	$2\pi r$	M1			
	$2\pi r \times \frac{x}{360}$	M1dep	oe length of arc		
	$2\pi r = 2\pi r \times \frac{x}{360} + 2r$		oe equation		
	or $\pi = \frac{\pi x}{360} + 1$	M1dep			
	or $2\pi = \frac{2\pi x}{360} + 2$				
	$\frac{360(\pi-1)}{\pi}$ or $\frac{360\pi-360}{\pi}$ or $360-\frac{360}{\pi}$	A1	oe expression in π with r can throughout	celled	
1	Alternative method 2: using the diameter				
	πd	M1	oe		
	$\pi d \times \frac{x}{360}$	M1dep	oe length of arc		
	$\pi d = \pi d \times \frac{x}{360} + d$		oe equation		
	or	M1dep			
	$\pi = \frac{\pi x}{360} + 1$				
	$\frac{360(\pi-1)}{\pi}$ or $\frac{360\pi-360}{\pi}$ or $360-\frac{360}{\pi}$	A 1	oe expression in π with d car throughout	ncelled	
	Additional Guidance				
	Ignore attempts to simplify, cancel or expand a correct expression M1M1M1A				

Q	Answer	Mark	Comments
	Alternative method 1 Shows algebraically that the angles are equal		
	4x + 40	M1	may be embedded or on the diagram
	x + 2(2x + 20) or $x + 4x + 40$	M1	
	x + 4x + 40 = 5x + 40 and Yes	A 1	
			n equation for angles at a point and $40 \text{ or } x + 2(2x + 20)$
	4x + 40	M1	may be embedded or on the diagram or implied
		IVII	eg implied by $10x + 80 = 360$
	x + 2(2x + 20) + 5x + 40 = 360		oe equation eg $10x + 80 = 360$
	or	M1	(x =) 28 may be on the diagram
	x + 4x + 40 + 5x + 40 = 360		
2	or (x =) 28		
	140 + 40 = 180 and Yes		oe
	or	A1	must obtain ($x = $) 28 from one expression
	28 + 152 = 180 and Yes		and substitute $(x =) 28$ into a different expression
	Alternative method 3 Assumes line is a diameter. Derives and solves an equation for angles on a line using $5x + 40$ and substitutes into $x + 2(2x + 20)$ or $x + 2(2x + 20) + 5x + 40$		
	5x + 40 = 180	M1	
	$(x =) (180 - 40) \div 5$	Midon	oe
	or (x =) 28	M1dep	(x =) 28 may be on the diagram
	28 + 152 = 180 and Yes		oe
	or	A1	must obtain ($x =$) 28 from one expression and substitute ($x =$) 28 into a different
	28 + 152 + 140 + 40 = 360 and Yes		expression

	Alternative method 4 Assumes line is a diameter. Derives and solves an equation for angles on a line using $x + 2(2x + 20)$ and substitutes into $5x + 40$ or $x + 2(2x + 20) + 5x + 40$			
	x + 2(2x + 20) = 180 or x + 4x + 40 = 180	M1		
	$(x =) (180 - 40) \div 5$ or $(x =) 28$	M1dep	oe (x =) 28 may be on the diagram	
	140 + 40 = 180 and Yes or 28 + 152 + 140 + 40 = 360 and Yes	A1	oe must obtain ($x =$) 28 from one expression and substitute ($x =$) 28 into a different expression	
2	Alternative method 5 Assumes line is a diameter. Derives and solves two equations for angles on a line/angles at a point			
cont	5x + 40 = 180 or x + 2(2x + 20) = 180 or x + 4x + 40 = 180 or x + 2(2x + 20) + 5x + 40 = 360 or x + 4x + 40 + 5x + 40 = 360	M1		
	$(x =) (180 - 40) \div 5$ or $(x =) 28$	M1dep	oe (x =) 28 may be on the diagram	
	Obtains (x =) 28 from two equations for angles on a line/ angles at a point and Yes	A1		

	Additional Guidance				
	Choose the scheme that favours the student				
	Up to M2 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts				
	Correct response with other incorrect work	M1M1A0			
2 cont	Alt 1 $2(2x + 20) = 4x + 20$ followed by $x + 4x + 20$ Alt 1 $x + 4x + 20$ with $2(2x + 20) = 4x + 20$ not seen Apply marks in a similar way in alts 2, 4 and 5	M0M1 M0M0			
	(x =) 28	M1M1			
	Allow (x =) 28 to be embedded	M1M1			
	No method marks scored with a value of $x \neq 28$ substituted into $5x + 40$ and $x + 2(2x + 20)$ giving the same value	M0M0A0			
	Yes can be implied eg Alt 1 $x + 4x + 40 = 5x + 40$ and It is a diameter	M1M1A1			

Q	Answer	Mark	Comments
3	2√11	B1	

Q	Answer	Mark	Comments	
	$20^2 (\times \pi)$ or $400 (\times \pi)$ or $15^2 (\times \pi)$ or $225 (\times \pi)$	M1	oe	
	$\frac{3}{4} \times 20^2 (\times \pi) \text{ or } 300 (\times \pi)$ or $\frac{1}{3} \times 15^2 (\times \pi) \text{ or } 75 (\times \pi)$	M1dep	oe	
	$\frac{3}{4} \times 20^2 (\times \pi) \text{ or } 300 (\times \pi)$ and $\frac{1}{3} \times 15^2 (\times \pi) \text{ or } 75 (\times \pi)$	M1dep		
4	$300~(\times~\pi)$ and $75~(\times~\pi)$ and 4	A1	Accept P = 4Q for 4 SC2 $40 \times \pi$ and $30 \times \pi$ and $30 \times \pi$ and $10 \times \pi$ and answer 3)
	Ad			
	Answer 4 with no working	M0A0		
	Condone inconsistent use of π eg 3	M3A1		
	Condone, for example, π400 for 400			
	Allow use of a numerical value for $\boldsymbol{\pi}$ with answer 4			
	Ignore units throughout			

Q	Answer	Mark	Comments	
	Alternative method 1			
5	20π ÷ 2π or 10	M1	oe may be seen on diagram implied by diameter = 20	
	$x^{2} + x^{2} = (\text{their } 10)^{2}$ or $2x^{2} = 100$ or $x^{2} = 50$ or their $10 \times \sin 45$ or their $10 \times \cos 45$ or their $10 \times \frac{1}{\sqrt{2}}$	M1	oe any letter (condone <i>a</i>) their 10 is their length <i>OQ</i> (the radius of the circle)	
	$\sqrt{\text{their } 10^2 \div 2}$ or $\sqrt{50}$ or $5\sqrt{2}$ or $4 \times \sqrt{50}$ or $4 \times \text{their } 10 \times \sin 45$ or $4 \times \text{their } 10 \times \cos 45$ or $40 \times \frac{1}{\sqrt{2}}$ or $\frac{40\sqrt{2}}{2}$ or $20\sqrt{2}$	M1dep	oe value for the length of one side of the square or the perimeter of the square eg $\frac{10}{\sqrt{2}}$ dep on previous mark	
	2 with full working seen for M3	A1		

	Alternative method 2			
5 cont	$20\pi \div 2\pi$ or 10 or side length of square = $5\sqrt{a}$	M1	oe may be seen on diagram implied by diameter = 20	
	(Perimeter of square = $20\sqrt{a}$ and) side length of square = $5\sqrt{a}$ and $\left(5\sqrt{a}\right)^2 + \left(5\sqrt{a}\right)^2 = (\text{their }10)^2$	M1	oe their 10 is their length OQ (the radius of the circle) condone missing brackets if recovered	
	$25a + 25a = (\text{their } 10)^2$ or $50a = 100$	M1dep	dep on M1M1	
	2 with full working seen for M3	A1		
	Ad			
	2 with no working			момомоло
	$\sqrt{2}$ on answer line (may score method marks)			A0

Q	Answer	Mark	Comments	
	$0.5 \times \pi \times 45$ or $0.5 \times [141, 141.4]$ or $[70.5, 70.7]$ or $0.5 \times \pi \times 45 + 75$ or $[145.5, 145.7]$	M1	oe eg 22.5π	
	$(0.5 \times \pi \times 45 + 75) \div 18$ or their [145.5, 145.7] \div 18	M1	oe their [145.5, 145.7] can be any value	
	8.08() or 8.09()	A1	may be implied by 8.1	
6	8.1	B1ft	ft any answer seen with greater than 2 sf SC2 3.9	
	Additional Guidance			
	Up to M2 may be awarded for correct even if this is seen amongst multiple awarded			
	$\frac{120}{18}$ = 6.67 answer 6.7			M0M1A0B1ft
	$\frac{120}{18} = 6.7$			M0M1A0B0ft
	$0.5 \times \pi \times 45$ and $70.7 \div 18 = 3.93$ answer 3.9			M1M1A0B1ft
	SC2 for an answer of 3.9 without working is when 75 is not used			